E2.5 Signals & Linear Systems

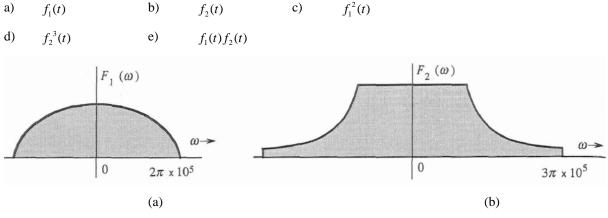
Tutorial Sheet 7 – Sampling

(Lectures 12 - 13)

1.* By applying the Parseval's theorem, show that

$$\int_{-\infty}^{\infty} \operatorname{sinc}^2(kx) dx = \frac{\pi}{k}.$$

2.* Fig. Q2 (a) and (b) shows Fourier spectra of signals $f_1(t)$ and $f_2(t)$. Determine the Nyquist sampling rates for the following signals. (Hint: Use the frequency convolution and the width property of the convolution.)



- 3.* Signals $f_1(t) = 10^4 rect(10^4 t)$ and $f_2(t) = \delta(t)$ are applied at the inputs of ideal lowpass filters $H_1(\omega) = rect(\frac{\omega}{40,000\pi})$ and $H_2(\omega) = rect(\frac{\omega}{20,000\pi})$. The outputs $y_1(t)$ and $y_2(t)$ of these filters are multiplied to obtain the signal $y(t) = y_1(t)y_2(t)$ as shown in Figure Q3.
 - a) Sketch $F_1(\omega)$ and $F_2(\omega)$.
 - b) Sketch $H_1(\omega)$ and $H_2(\omega)$.
 - c) Sketch $Y_1(\omega)$ and $Y_2(\omega)$.
 - d) Find the Nyquist sampling rate of $y_1(t)$, $y_2(t)$ and y(t).

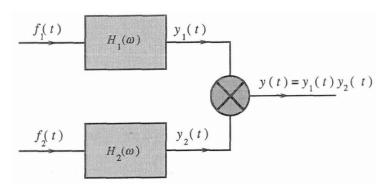


Figure Q3

- 4.** For the signal $e^{-at}u(t)$, determine the bandwidth of an anti-aliasing filter if the essential bandwidth of the signal contains 99% of the signal energy.
- 5.** A zero-order hold circuit shown in Fig. Q5 is often used to reconstruct a signal f(t) from its samples.
 - a) Find the unit impulse response of this circuit.
 - b) Find the transfer function $H(\omega)$, and sketch $|H(\omega)|$.
 - c) Sketch the output of this circuit for an input f(t) which is $\frac{1}{4}$ cycle of a sinewave.

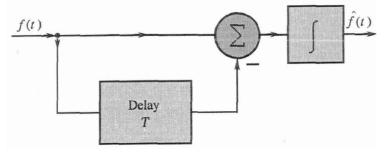


Figure Q5